Choosability of the square of planar subcubic graphs with large girth
نویسندگان
چکیده
منابع مشابه
Choosability of the square of planar subcubic graphs with large girth
We first show that the choose number of the square of a subcubic graph with maximum average degree less than 18/7 is at most 6. As a corollary, we get that the choose number of the square of a planar graph with girth at least 9 is at most 6. We then show that the choose number of the square of a subcubic planar graph with girth at least 13 is at most 5. Key-words: colouring, list colouring, pla...
متن کاملInjective choosability of subcubic planar graphs with girth 6
An injective coloring of a graph G is an assignment of colors to the vertices of G so that any two vertices with a common neighbor have distinct colors. A graph G is injectively k-choosable if for any list assignment L, where |L(v)| ≥ k for all v ∈ V (G), G has an injective L-coloring. Injective colorings have applications in the theory of error-correcting codes and are closely related to other...
متن کاملChoosability of planar graphs of girth 5
Thomassen proved that any plane graph of girth 5 is list-colorable from any list assignment such that all vertices have lists of size two or three and the vertices with list of size two are all incident with the outer face and form an independent set. We present a strengthening of this result, relaxing the constraint on the vertices with list of size two. This result is used to bound the size o...
متن کاملThe chromatic number of the square of subcubic planar graphs
Wegner conjectured in 1977 that the square of every planar graph with maximum degree at most 3 is 7-colorable. We prove this conjecture using the discharging method and computational techniques to verify reducible configurations. Mathematics Subject Classification: Primary 05C15; Secondary 05C10, 68R10.
متن کاملEquitable coloring planar graphs with large girth
A proper vertex coloring of a graph G is equitable if the size of color classes differ by at most one. The equitable chromatic threshold of G, denoted by ∗Eq(G), is the smallest integer m such that G is equitably n-colorable for all n m. We prove that ∗Eq(G) = (G) if G is a non-bipartite planar graph with girth 26 and (G) 2 or G is a 2-connected outerplanar graph with girth 4. © 2007 Elsevier B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2009
ISSN: 0012-365X
DOI: 10.1016/j.disc.2007.12.100